C.1.
La vitesse quadratique moyenne des particules d'un gaz est donnée par:
|v| = \sqrt{\frac{3 \cdot RT}{M}}
En prenant soin de tout exprimer en unités SI cohérentes:
R = 8,315 J · K^{-1} · mol^{-1}, T = 298 K,
M(Ar) = 0,03995 kg · mol^{-1} ⇒ |v| = 431,4 m · s^{-1}
M(NH_3) = 0,0170 kg · mol^{-1} ⇒ |v| = 660,7 m · s^{-1}
M(SO_2) = 0,06407 kg · mol^{-1} ⇒ |v| = 340,6 m · s^{-1}
M(UF_6) = 0,35202 kg · mol^{-1} ⇒ |v| = 145,3 m · s^{-1}.

C.2.
Le nombre de molécules d'un constituant A parvenant à passer à travers la céramique poreuse par unité de temps est proportionnelle à la vitesse d'effusion v\v (A) et à la pression partielle P_1(A) du constituant A dans le premier compartiment.
Peu après le début de l'effusion, le nombre de moles n_2(A) du constituant A dans le second compartiment sera donnée par: n_2(A) = P_1(A) · v\v (A),
or encore: n_2(A) = constante · P_1(A) · v\v (A).
On aura donc ici:
\begin{align*}
n_2(H_2) &= \text{constante} \cdot P_1(H_2) \cdot v\v (H_2) \\
n_2(CO_2) &= \text{constante} \cdot P_1(CO_2) \cdot v\v (CO_2)
\end{align*}

En divisant l'équation (1) par l'équation (2), on obtient:
\begin{align*}
\frac{n_2(H_2)}{n_2(CO_2)} &= \text{constante} \cdot \frac{P_1(H_2)}{P_1(CO_2)} \cdot \frac{v\v (H_2)}{v\v (CO_2)}.
\end{align*}
avec: \v\v (H_2) = \sqrt{\frac{M(CO_2)}{M(H_2)}} = \sqrt{\frac{44,01}{2,02}} = 4,67
et: \frac{P_1(H_2)}{P_1(CO_2)} = \frac{n_1(H_2)}{n_1(CO_2)} = \frac{V_1(H_2)}{V_1(CO_2)} = \frac{1}{10} ⇒ \frac{n_2(H_2)}{n_2(CO_2)} = 0,1 \cdot 4,67 = 0,467
En posant arbitrairement n_2(H_2) = 1 mol, il vient: n_2(CO_2) = \frac{1}{0,467} = 2,14 mol.
La fraction molaire de H_2 dans le second compartiment est donc:
x(H_2) = \frac{n_2(H_2)}{n_2(H_2) + n_2(CO_2)} = \frac{1}{1 + 2,14} = 0,32.
Par conséquent, x(CO_2) = 1 - x(H_2) = 1 - 0,32 = 0,68.
C.3.

Loi générale des gaz parfaits : \(\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \)

a) \(\frac{760 \text{ Torr} \cdot 1 \text{ L}}{298 \text{ K}} = \frac{760 \text{ Torr} \cdot V_2}{473 \text{ K}} \Rightarrow V_2 = \frac{473}{298} \cdot 1 \text{ L} = 1,59 \text{ L} \).

b) \(P_2 = \frac{P_1 \cdot V_1 \cdot T_2}{V_2 \cdot T_1} = \frac{1,0 \text{ atm} \cdot 0,5 \text{ L} \cdot 400 \text{ K}}{0,2 \text{ L} \cdot 400 \text{ K}} = 2,5 \text{ atm} \).

c) \(V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} = \frac{1,23 \text{ atm} \cdot 760 \text{ Torr} \cdot 0,7 \text{ L} \cdot 473 \text{ K}}{650 \text{ Torr} \cdot 250 \text{ K}} = 1,90 \text{ L} \).

d) \(P_2 = \frac{P_1 \cdot V_1 \cdot T_2}{V_2 \cdot T_1} = \frac{0,6 \text{ bar} \cdot 3,25 \text{ L} \cdot 373 \text{ K}}{1,75 \text{ L} \cdot 300 \text{ K}} = 1,39 \text{ bar} \).

e) \(P_2 = \frac{P_1 \cdot V_1 \cdot T_2}{V_1 \cdot T_2} = \frac{700 \text{ Torr} \cdot 3,0 \text{ L} \cdot 300 \text{ K}}{1 \text{ L} \cdot 400 \text{ K} \cdot 760 \text{ Torr} \cdot \text{atm}^{-1}} = 2,07 \text{ atm} \).

f) \(P_2 = \frac{P_1 \cdot V_1 \cdot T_2}{V_2 \cdot T_2} = \frac{1 \text{ atm} \cdot 7,5 \text{ L} \cdot 350 \text{ K}}{2,25 \text{ L} \cdot 273 \text{ K}} = 4,27 \text{ atm} \).

C.4.

\(P \cdot V = n \cdot R \cdot T \Rightarrow n = \frac{P \cdot V}{R \cdot T} = \frac{1,8 \cdot 10^{-5} \text{ Torr} \cdot 0,1 \text{ L}}{0,0821 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K} \cdot 760 \text{ Torr} \cdot \text{atm}^{-1}} \)

\(n = 9,62 \cdot 10^{-11} \text{ mol} \Rightarrow n \cdot \mathcal{N}_\Lambda = 9,62 \cdot 10^{-11} \text{ mol} \cdot 6,022 \cdot 10^{23} \text{ mol}^{-1} \)

\(\Rightarrow n \cdot \mathcal{N}_\Lambda = 5,8 \cdot 10^{13} \text{ particules} . \)

C.5.

\(P \cdot V = n \cdot R \cdot T \Rightarrow n = \frac{P \cdot V}{R \cdot T} \Rightarrow m = \frac{P \cdot V}{R \cdot T} \Rightarrow M = \frac{m \cdot R \cdot T}{P \cdot V} \)

\(M = \frac{2,0 \text{ g} \cdot 0,0821 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1 \text{ atm} \cdot 1 \text{ L}} = 49,26 \text{ g} \cdot \text{mol}^{-1} . \)

C.6.

Attention ! Un gaz liquéfié (donc un liquide) n'est pas un gaz parfait !

Masse de méthane liquéfié : \(m (\text{CH}_4) = V_{\text{liq}} \cdot \rho_{\text{liq}} = 10 \text{ m}^3 \cdot 415 \text{ kg} \cdot \text{m}^{-3} = 4'150 \text{ kg} \)

\(n(\text{CH}_4) = \frac{m (\text{CH}_4)}{M (\text{CH}_4)} = \frac{4,15 \cdot 10^6 \text{ g}}{16,05 \text{ g} \cdot \text{mol}^{-1}} = 2,59 \cdot 10^5 \text{ mol} \)

\(P \cdot V = n \cdot R \cdot T \Rightarrow V_{\text{gaz}} = \frac{n \cdot R \cdot T}{P} = \frac{2,59 \cdot 10^5 \text{ mol} \cdot 0,0821 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 293 \text{ K}}{1 \text{ atm}} \)

\(V_{\text{gaz}} = 6,22 \cdot 10^6 \text{ L} = 6'220 \text{ m}^3 . \)
Dans les conditions initiales:
\[n_i(SO_2) = n_j = \frac{P_j \cdot V_j}{R \cdot T} ; \quad n_i(O_2) = n_2 = \frac{P_2 \cdot V_2}{R \cdot T} \]

a) Dans l’ensemble représenté par les deux réservoirs :
\[
\begin{align*}
 x(SO_2) &= \frac{n_i(SO_2)}{n_i(SO_2) + n_i(O_2)} = \frac{P_j \cdot V_j}{P_j \cdot V_j + P_2 \cdot V_2} = \frac{2,125 \cdot 0,75}{2,125 \cdot 0,75 + 1,5 \cdot 0,5} = 0,680. \\
 x(O_2) &= 1 - x(SO_2) = 1 - 0,680 = 0,320. \\
 P_{tot} &= \frac{n_{tot} \cdot R \cdot T}{V_{tot}} = \frac{n(SO_2) + n(O_2) \cdot R \cdot T}{V_1 + V_2} = \frac{P_j \cdot V_j + P_2 \cdot V_2}{V_1 + V_2} \\
 P_{tot} &= \frac{2,125 \cdot 0,75 + 1,5 \cdot 0,5}{2,125 + 1,5} = 0,647 \text{ atm.} \\
 P(SO_2) &= x(SO_2) \cdot P_{tot} = 0,680 \cdot 0,647 = 0,440 \text{ atm.} \\
 P(O_2) &= x(O_2) \cdot P_{tot} = 0,320 \cdot 0,647 = 0,207 \text{ atm.}
\end{align*}
\]

b) \[2 \text{SO}_2 + \text{O}_2 \longrightarrow 2 \text{SO}_3 \]
\[
\begin{align*}
 n_j(SO_2) &= \frac{P_j \cdot V_j}{R \cdot T} = \frac{0,75 \cdot 2,125}{0,0821 \cdot 353} = 5,50 \cdot 10^{-2} \text{ mol} \\
 n_j(O_2) &= \frac{P_2 \cdot V_2}{R \cdot T} = \frac{0,5 \cdot 1,5}{0,0821 \cdot 353} = 2,59 \cdot 10^{-2} \text{ mol} \\
 n_j(SO_2) > 2 \cdot n_j(O_2) \Rightarrow \text{SO}_2 \text{ est en excès par rapport à O}_2 \\
 \Rightarrow \text{O}_2 \text{ est le réactif limitant et sera consommé entièrement.} \\
 \Delta n(SO_2) &= -2 \cdot n_j(O_2) = -2 \cdot 2,59 \cdot 10^{-2} \text{ mol} = -5,18 \cdot 10^{-2} \text{ mol} \\
 \text{Il reste donc à la fin: } n_j(O_2) = 0 \text{ mol, ainsi que} \\
 n_j(SO_2) &= n_j(SO_2) + \Delta n(SO_2) = 5,50 \cdot 10^{-2} - 5,18 \cdot 10^{-2} = 3,2 \cdot 10^{-3} \text{ mol} \\
 n_j(SO_3) &= -\Delta n(SO_2) = 2 \cdot n_j(O_2) = 5,18 \cdot 10^{-2} \text{ mol} \\
 x(SO_2) &= \frac{n_j(SO_2)}{n_j(SO_2) + n_j(O_2) + n_j(SO_3)} = \frac{3,2 \cdot 10^{-3}}{(0,32 + 5,18) \cdot 10^{-2}} = 0,058. \\
 x(O_2) &= 0 \\
 x(SO_3) &= 1 - x(SO_2) = 1 - 0,058 = 0,942. \\
 P_{tot} &= \frac{n_{tot} \cdot R \cdot T}{V_{tot}} = \frac{n(SO_2) + n(SO_3) \cdot R \cdot T}{V_1 + V_2} = \frac{(3,2 \cdot 10^{-3} + 5,18 \cdot 10^{-2}) \cdot 0,0821 \cdot 353}{2,125 + 1,5} \\
 P_{tot} &= 0,44 \text{ atm.}
\end{align*}
\]
C.8.

Conversion d'unités: \(a = 363,9 \text{ L}^2 \cdot \text{kPa} \cdot \text{mol}^{-2} = 3,59 \text{ L}^2 \cdot \text{atm} \cdot \text{mol}^{-2} \)
\[b = 0,0427 \text{ L} \cdot \text{mol}^{-1} \]

Loi de van der Waals: \((P + \frac{a \cdot n^2}{V^2}) \cdot (V - n \cdot b) = n \cdot R \cdot T \)
\[\Rightarrow P = \frac{n \cdot R \cdot T}{V - n \cdot b} - \frac{a \cdot n^2}{V^2} = \frac{10 \cdot 0,0821 \cdot 320}{2 \cdot 10 \cdot 0,0427} \cdot \frac{3,59 \cdot 10^2}{2^2} = 77,3 \text{ atm} \].

Loi des gaz parfaits: \(P = \frac{n \cdot R \cdot T}{V} = \frac{10 \cdot 0,0821 \cdot 320}{2} = 131,4 \text{ atm} \).
\[\Rightarrow P_{\text{réel}} = 0,59 \cdot P_{\text{idéale}} \]

L’écart par rapport à l'idéalité dans le cas de CO\textsubscript{2} à des pressions élevées est donc très loin d'être négligeable.