Photochemistry I

Prof. Jacques-E. Moser

http://photochemistry.epfl.ch/PC.html
PHOTOCHEMISTRY I

1. Basic principles
 1.1 Introduction
 1.2 Laws of light absorption
 1.3 Radiation and molecular orbitals
 1.4 Selection rules
 1.5 Light absorption by solids

2. Molecular photophysics
 2.1 Excited state’s deactivation pathways
 2.2 Kinetics of photochemical processes
 2.3 Intermolecular energy transfer

3. Photochemical reactions
 3.1 Photodissociation
 3.2 Light-induced electron transfer

4. Synthetic organic reactions
 4.1 Reactions of ethenes and aromatic compounds
 4.2 Photochemistry of carbonyl chromophore
 4.3 Photo-oxygenation reactions

5. Polymer photochemistry
 5.1 Photo-polymerization and cross-linking
 5.2 Photodegradation and stabilization of polymers

6. Natural photochemical processes
 6.1 Atmospheric reactions
 6.2 Photochemistry of waters and soils
 6.3 Natural photosynthesis
 6.4 Mechanisms of vision
1. Basic principles
Photochemistry (light-induced chemistry)

Chemistry: forming or breaking of chemical bonds and charge transfer within or between molecules.

Photochemical reactions are processes during which the energy required for their activation (ΔU^\ddagger) or their development (ΔG_r) is provided by an electromagnetic radiation.

Activation energies of the order of $\Delta U^\ddagger = 100 \text{ kJ} \cdot \text{mol}^{-1}$ and bond energies of the order of $\Delta G = 200-400 \text{ kJ} \cdot \text{mol}^{-1}$ imply absorption of photons that should individually carry an equivalent amount of energy.

<table>
<thead>
<tr>
<th>Bond</th>
<th>ΔH [kJ mol$^{-1}$]</th>
<th>λ [nm]</th>
<th>Bond</th>
<th>ΔH [kJ mol$^{-1}$]</th>
<th>λ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–H</td>
<td>436</td>
<td>274</td>
<td>N–N</td>
<td>160</td>
<td>748</td>
</tr>
<tr>
<td>C–H</td>
<td>413</td>
<td>290</td>
<td>N=N</td>
<td>631</td>
<td>190</td>
</tr>
<tr>
<td>N–H</td>
<td>393</td>
<td>304</td>
<td>N≡N</td>
<td>941</td>
<td>127</td>
</tr>
<tr>
<td>P–H</td>
<td>297</td>
<td>403</td>
<td>N–O</td>
<td>201</td>
<td>595</td>
</tr>
<tr>
<td>C–C</td>
<td>347</td>
<td>345</td>
<td>N–P</td>
<td>297</td>
<td>403</td>
</tr>
<tr>
<td>C–O</td>
<td>358</td>
<td>334</td>
<td>O–H</td>
<td>464</td>
<td>258</td>
</tr>
<tr>
<td>C–N</td>
<td>305</td>
<td>392</td>
<td>O–S</td>
<td>265</td>
<td>451</td>
</tr>
<tr>
<td>C–Cl</td>
<td>397</td>
<td>301</td>
<td>O–Cl</td>
<td>269</td>
<td>445</td>
</tr>
<tr>
<td>C=C</td>
<td>607</td>
<td>197</td>
<td>O–O</td>
<td>204</td>
<td>586</td>
</tr>
<tr>
<td>C=O</td>
<td>805</td>
<td>149</td>
<td>C–F</td>
<td>552</td>
<td>216</td>
</tr>
<tr>
<td>O=O</td>
<td>498</td>
<td>240</td>
<td>C–S</td>
<td>259</td>
<td>461</td>
</tr>
</tbody>
</table>
Types of photochemical reactions

a) $\Delta G_r < 0$ (exergonic reaction, spontaneous)
 Light enable for overcoming the activation barrier or to lower it by acting as a catalyst. Such reactions are called "photocatalytic"

Example: $\text{H}_2 + \text{Cl}_2 \rightarrow 2 \text{HCl}$

b) $\Delta G_r > 0$ (endergonic, non spontaneous)
 Energy required by the reaction is brought by light. Light energy is (partially) converted into chemical energy.

Example:
Natural photosynthesis

$$\text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{hv}} \text{chloroplasts} \quad \frac{1}{6} \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \quad \Delta G = 496 \text{ kJ} \cdot \text{mol}^{-1}$$

Functions associated with light

$$\text{A} \xrightarrow{\text{hv}} \text{B} \ (\pm \Delta G)$$

a) **Light as a reactant**
 - synthesis of B
 - reaction inhibition (photo-stabilization of A)

b) **Light as an energy vector**
 - endergonic formation of B
 - energy storage

c) **Light as information vector**
 - optical absorption profile (photography, information storage)
 - charge density profile (xerography)
 - 3D material profile (photolithography)
Fundamental laws of photochemistry

Grotthuss-Draper law (1812, 1842)
Light must be absorbed by a chemical substance in order for a photochemical reaction to take place.

Stark-Einstein law (1908-1913)
Also known as the "photo-equivalence law"
For each photon of light absorbed by a chemical system, only one molecule is activated for a photochemical reaction.

\[
\Delta G_{\text{molecule}} = N_A \cdot h \nu = N_A \cdot \frac{hc}{\lambda}
\]

1 *Einstein* = 1 mol of photons = \(N_A\) photons
1.2 Laws of light absorption

Phenomenological (macroscopic) law of absorption

\[
I_T = I_0 - I_A - I_R
\]

Transmittance \(T = \frac{I_T}{I_0} \)

Reflectance \(R = \frac{I_R}{I_0} \)

Absorbance \(A = -\log\left(\frac{I_T}{I_0}\right) = -\log T \)

\[A = -\log\left(\frac{I_T}{I_0}\right) = -\log T = \varepsilon \cdot c \cdot l\]

Lambert’s law

\[
I(x) = I_0 \cdot \exp(-\alpha x)
\]

\[
\ln\left(\frac{I(x)}{I_0}\right) = -\alpha x \quad \ln\left(\frac{I_T}{I_0}\right) = -\alpha l
\]

\[\alpha = \text{absorption constant \, [cm}^{-1}\text{]}\]

Link with the medium’s complex refractive index:

\[\tilde{n} = n - i\kappa \quad [-] \quad \kappa = \text{absorption coefficient \, [-]}\]

\[\alpha = \frac{4\pi \cdot \kappa}{\lambda_0}\]

(imaginary part of the refractive index)

Beer-Lambert Law

\[A = -\log\left(\frac{I_T}{I_0}\right) = -\log T = \varepsilon \cdot c \cdot l \quad [-]\]

\[c \text{, molar concentration \, [mol} \cdot \text{L}^{-1}\text{]}\]

\[l \text{, optical pathlength \, [cm]}\]

\[\varepsilon \text{, molar decadic extinction coefficient}\]

Example: \(c = 10^{-3} \text{ M}, \varepsilon = 10^4 \text{ mol}^{-1} \cdot \text{L} \cdot \text{cm}^{-1}\)

\[\Rightarrow T = 0.01, \quad A = 2 \Rightarrow 99\% \text{ of the light is absorbed within the first 2 mm of the solution}\]

Superimposition of absorbing systems

Transmittance is multiplicative:

\[T_{\text{tot}} = \prod_i T_i\]

Absorbance is additive:

\[A_{\text{tot}} = \sum_i A_i\]

August Beer

(1825-1863)
Justification of Beer-Lambert law

Initial assumptions
- individual molecules totally block light within a characteristic cross-section σ
- monochromatic light
- molecules do not cast any shadow on each other (only conceivable if the concentration c is very low)

Absorptance of a solution volume $S \cdot dx$ containing n molecules:

$$-\frac{dI}{I(x)} = \frac{I(x+dx) - I(x)}{I(x)} = \frac{n \cdot \sigma}{S} = \frac{c \cdot S \cdot N_A \cdot dx \cdot \sigma}{S} = c \cdot \sigma \cdot N_A \cdot dx$$

$$-\frac{1}{I(x)} \frac{dI}{dx} = c \cdot \sigma \cdot N_A \Rightarrow \ln \frac{I}{I_0} = c \cdot \sigma \cdot l \cdot N_A$$

By defining: $\varepsilon = \sigma \cdot N_A \cdot \log(e) = \frac{\sigma \cdot N_A}{2.303}$ \Rightarrow $-\log \frac{I}{I_0} = A = \varepsilon \cdot c \cdot l$

Absorption by non-continuous media

Absorption and reflexion by a specular (mirror-like) surface

$I_0 = I_R + I_A + I_T$

$R_s = I_R / I_0$ specular reflectance

Fresnel law

$$R_s = \frac{I_R}{I_0} = \frac{(n-1)^2 + n^2 \cdot \kappa^2}{(n+1)^2 + n^2 \cdot \kappa^2}$$

at $\varphi = 0$

Augustin Fresnel (1788-1827)
Absorption by a scattering medium

Diffuse reflectance \(I_0 = I_{Rd} + I_A + I_T \)

Schuster-Kubelka-Munk theory

\[
\begin{align*}
\text{Phenomenological extinction constants:} \\
k \ [cm^{-1}] \text{ absorption} & \quad k_{x=0} = -\frac{1}{dx} \cdot \ln \frac{dl}{I_0} \\
s \ [cm^{-1}] \text{ scattering} & \quad s_{k=0} = -\frac{1}{dx} \cdot \ln \frac{dl}{I_0}
\end{align*}
\]

Kubelka and Kubelka-Munk equations

Kubelka's hyperbolic solutions

\[
\begin{align*}
R &= \frac{1 - R_s (a - b \cdot \coth (b \cdot 2s \cdot l))}{a + b \cdot \coth (b \cdot 2s \cdot l) - R_s} \\
T &= \frac{b}{a \cdot \sinh (b \cdot 2s \cdot l) + b \cdot \cosh (b \cdot 2s \cdot l)}
\end{align*}
\]

with: \(R_s = \) background reflectance

\[
\begin{align*}
a &= 1 + \frac{k}{s} \\
b &= \sqrt{a^2 - 1}
\end{align*}
\]

Kubelka-Munk simplified solution

\[
I \to \infty \quad \Rightarrow \quad F(R_s) = \frac{k}{s} = \frac{(1 - R_s)^2}{2R_s}
\]

Absorber homogeneously dispersed in a scattering medium (powder)

\[
k \ [cm^{-1}] = \ln(10) \cdot \varepsilon \ [mol^{-1} \ L \ cm^{-1}] \cdot c \ [mol \ L^{-1}]
\]

\[
F(R_s) = \frac{(1 - R_s)^2}{2R_s} = \varepsilon \cdot c \cdot \frac{\ln(10)}{s}
\]
Integrating sphere for diffuse reflectance spectroscopy

A. Diffuse reflectance

Specular light trap

Specular white plate

B. Total reflectance