








Figure S3 SEM image of a wrinkled PEGDA film (20 vol% PEGDA/toluene, spin coated at 6000 

rpm) showing the thickness of the polymer layer and the shape of the wrinkles.



Figure S4 SEM images of perovskite nanocrystals synthesized from a 0.5 M (top) and 0.01 M 

(bottom) precursor solution. 



Dynamic Light Scattering 

Standard dynamic light scattering (DLS) data were collected at constant temperature (21 °C) at 90 

deg., using a commercial goniometer instrument (3D LS Spectrometer, LS Instruments AG, 

Switzerland). The primary beam was formed by a linearly polarized and collimated laser beam 

(Cobolt 05-01 diode pumped solid state laser, λ = 660 nm, Pmax = 500 mW), and the scattered light 

was collected by single-mode optical fibers equipped with integrated collimation optics. The collected 

light was coupled into two high-sensitivity APD detectors via laser-line filters (Perkin Elmer, Single 

Photon Counting Module), and their outputs were fed into a two-channel multiple-tau correlator. The 

signal-to-noise ratio was improved by cross-correlating these two channels. The corresponding field 

auto-correlation functions were obtained via the Siegert relation:  where  is 𝑔1(𝑡) = 𝑔2(𝑡) ‒ 1 𝑔2(𝑡)

the intensity auto-correlation function constructed from the temporal fluctuations of the depolarized 

component of the scattered intensity.

For a dilute suspension of uniform spherical NPs of radius , the correlation function is written 𝑟

as,                             

Equation 1 𝑔1(𝑡) = 𝑒 ‒ Γ(𝑞,𝑟)𝑡

where
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refractive index of the solvent.

The field correlation function from polydisperse samples is frequently expressed as the Laplace 

transform of the probability density function describing the dispersion in the relaxation rate. Then the 

correlation function (Equation 1) is written as 
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where  is the probability density function of the relaxation rates.  is modelled here by the 𝑃(Γ) 𝑃Γ(Γ)

(modified) Schulz–Zimm distribution: 
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where

Equation 6
〈Γ〉 ≡

∞

∫
0
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and

Equation 7
𝜎(Γ) ≡

𝑣𝑎𝑟Γ
〈Γ〉

In case of a unimodal distribution . When  is close to 1, the Schulz–Zimm distribution 0 < 𝜎 ≤ 1 𝜎

approaches an exponential distribution, and when  is small, it approaches a Gaussian distribution. 𝜎

According to Equation 5, the correlation function is now written as

Equation 8 .𝑔1(𝑡) = (1 + 〈Γ〉𝜎2𝑡)
‒

1

𝜎2

The correlation functions and their respective best fit (Figure S1, Equation 8) corresponding to the 

three different concentrations of the perovskite precursor solution are shown below. The estimated 

apparent intensity-weighted average hydrodynamic radii were 807 nm, 338 nm and 129 nm for 0.5M, 

0.1M and 0.01M solutions, respectively. The intensity-weighted probability function of the 

hydrodynamic radius, , is estimated via applying the rule of transforming random variables. Let 𝑃𝑟(𝑟)

 represent the relationship between  and  (Equation 2 and 3). Then the probability density function Φ Γ 𝑟

of the intensity-weighted hydrodynamic radius is estimated via

Equation 9
𝑃𝑟(𝑟) = 𝑃Γ(Φ(𝑟)) ⋅ | 𝑑

𝑑𝑟
Φ(𝑟)|





Figure S5 Correlation function and model fit (left) of the Equation 8 for 0.5M, 0.1M and 0.01M 

precursor solution concentrations (top left). Probability density function of the relaxation rates for the 

three samples (top right). Intensity-weighted probability density function of the hydrodynamic radius 

(bottom).



Figure S6 Preferential localization of perovskite crystals inside the ridges of a wrinkle pattern as 

shown by means of visible light microscopy (top) and under UV illumination (bottom). The green 

fluorescence emission of perovskite nanocrystals can be observed under UV light. Magnified images 

are shown on the right.



Figure S7 Photoluminescence spectra collected using an integrating sphere of a film with (Sample 

1) and without the perovskite crystals (Sample 2) and toluene dispersion of perovskite crystals. The 

signal from the film is too weak to quantify the emissive efficiency.  This is due to the fact that the 

smallest particle size obtained with the method in this work (100 nm) is too large to get a high enough 

dispersion of particles in solution and thus in the film.



Cerda and Mahadevan derived the following equations for the wavelength  and amplitude A of wrinkles on 
a thin sheet of length L, width W, thickness t, elastic modulus B, imposed transverse displacement , and Δ
tension T:

𝜆 = 2 𝜋(𝐵
𝑇)

1
4𝐿

1
2

𝐴 =
2

𝜋 ( Δ
𝑊)

1
2𝜆

For a stretched sheet these equation become:
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So the amplitude of the wrinkles is dependent upon the thickness of the film with a power law dependence 
with exponent 0.5. So, using the basic properties of logarithms:

log (𝐴) ∝ 0.5log (𝑡) + 𝐶

Figure S8. Linear best fit of the wrinkle amplitude as function of initial PEGDA film thickness (red line is a fit 
to: log(A)=a*log(t)+b; with a = 2.013; b = -0.1543).

Figure S7 reports the linear best fit of the logarithm of the wrinkle height as a function of the initial film 
thickness. Although the general behaviour is in agreement with the Cerda and Mahadevan theory (i.e. it is 
possible to increase the amplitude of the wrinkles by increasing the thickness of the film) the angular 
coefficient of the fitting line is ~2, far from the expected 0.5. This is probably due to the very simple model 
used, which approximates the PEGDA to a homogeneous film subjected to a compressive internal stress. In 
our case, the PEGDA film most probably has a longitudinal anisotropy with the elastic modulus varying 
throughout the thickness of the material, due to the different plasma exposure leading to a gradient in the 
crosslinking degree along the vertical direction (see Chandra et al, “Self-Wrinkling of UV-Cured Polymer 
Films“, , Advanced Materials, 23(30), pp.3441-3445). We can approximate this system with a two-layer film 



with a constant “hard skin” of thickness hs and a varying “soft skin” of thickness h. So the total thickness will 
be t=hs+h. In this approximation we can use the relationship found by Cerda and Mahadevan:

𝐴 ∝ 𝜆 ∝ (ℎℎ𝑠)
1
2→log (𝐴) ∝ 0.5𝑙𝑜𝑔⁡(𝑡 ‒ ℎ𝑠)

because  and, using the properties of logarithms, ℎ𝑠 = ℎ𝑠(𝑡 ‒ ℎ𝑠) log (ℎ𝑠(𝑡 ‒ ℎ𝑠)) = log (𝑡 ‒ ℎ𝑠) + 𝑐𝑜𝑛𝑠𝑡.

Figure S9. Linear best fit of wrinkles amplitude as function of initial PEGDA film thickness using the two-layer 
approximation (red line is fit to log(A)=a*log(t-h)+b; with h = 0.322; a = 1.246; b = 0.3921).

In Figure S9 the linear best fit of log(A) as function of log(t-hs) is shown. The hard skin thickness has been 
chosen to be equal to 0.322 because  for this thickness no wrinkles are formed (c.f. with Figs. 1d and S1). As 
we can see the angular coefficient of the fitting line is ~1.2, which is significantly closer to the angular 
coefficient of 0.5 predicted from the Cerda and Mahadevan model than the value we obtained with a simple 
homogeneous film approximation. This confirms our hypothesis that the anisotropy with the elastic modulus 
varying through the thickness makes our system more complex than a single or double layer film 
approximation of the Cerda and Mahadevan model.




